Ice
Functions about ice and melting, but not the freezing point.
- gsw.ice.Helmholtz_energy_ice(t, p)[source]
Calculates the Helmholtz energy of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- Helmholtz_energy_icearray-like, J/kg
Helmholtz energy of ice
- gsw.ice.adiabatic_lapse_rate_ice(t, p)[source]
Calculates the adiabatic lapse rate of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- adiabatic_lapse_rate_icearray-like, K/Pa
adiabatic lapse rate
- gsw.ice.alpha_wrt_t_ice(t, p)[source]
Calculates the thermal expansion coefficient of ice with respect to in-situ temperature.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- alpha_wrt_t_icearray-like, 1/K
thermal expansion coefficient of ice with respect to in-situ temperature
- gsw.ice.chem_potential_water_ice(t, p)[source]
Calculates the chemical potential of water in ice from in-situ temperature and pressure.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- chem_potential_water_icearray-like, J/kg
chemical potential of ice
- gsw.ice.cp_ice(t, p)[source]
Calculates the isobaric heat capacity of seawater.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- cp_icearray-like, J kg^-1 K^-1
heat capacity of ice
- gsw.ice.enthalpy_ice(t, p)[source]
Calculates the specific enthalpy of ice (h_Ih).
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- enthalpy_icearray-like, J/kg
specific enthalpy of ice
- gsw.ice.entropy_ice(t, p)[source]
Calculates specific entropy of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- ice_entropyarray-like, J kg^-1 K^-1
specific entropy of ice
- gsw.ice.ice_fraction_to_freeze_seawater(SA, CT, p, t_Ih)[source]
Calculates the mass fraction of ice (mass of ice divided by mass of ice plus seawater), which, when melted into seawater having (SA,CT,p) causes the final dilute seawater to be at the freezing temperature. The other outputs are the Absolute Salinity and Conservative Temperature of the final diluted seawater.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- t_Iharray-like
In-situ temperature of ice (ITS-90), degrees C
- Returns
- SA_freezearray-like, g/kg
Absolute Salinity of seawater after the mass fraction of ice, ice_fraction, at temperature t_Ih has melted into the original seawater, and the final mixture is at the freezing temperature of seawater.
- CT_freezearray-like, deg C
Conservative Temperature of seawater after the mass fraction, w_Ih, of ice at temperature t_Ih has melted into the original seawater, and the final mixture is at the freezing temperature of seawater.
- w_Iharray-like, unitless
mass fraction of ice, having in-situ temperature t_Ih, which, when melted into seawater at (SA,CT,p) leads to the final diluted seawater being at the freezing temperature. This output must be between 0 and 1.
- gsw.ice.internal_energy_ice(t, p)[source]
Calculates the specific internal energy of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- internal_energy_icearray-like, J/kg
specific internal energy (u)
- gsw.ice.kappa_const_t_ice(t, p)[source]
Calculates isothermal compressibility of ice. Note. This is the compressibility of ice AT CONSTANT IN-SITU TEMPERATURE
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- kappa_const_t_icearray-like, 1/Pa
isothermal compressibility
- gsw.ice.kappa_ice(t, p)[source]
Calculates the isentropic compressibility of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- kappa_icearray-like, 1/Pa
isentropic compressibility
- gsw.ice.melting_ice_SA_CT_ratio(SA, CT, p, t_Ih)[source]
Calculates the ratio of SA to CT changes when ice melts into seawater. It is assumed that a small mass of ice melts into an infinite mass of seawater. Because of the infinite mass of seawater, the ice will always melt.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- t_Iharray-like
In-situ temperature of ice (ITS-90), degrees C
- Returns
- melting_ice_SA_CT_ratioarray-like, g kg^-1 K^-1
the ratio of SA to CT changes when ice melts into a large mass of seawater
- gsw.ice.melting_ice_SA_CT_ratio_poly(SA, CT, p, t_Ih)[source]
Calculates the ratio of SA to CT changes when ice melts into seawater. It is assumed that a small mass of ice melts into an infinite mass of seawater. Because of the infinite mass of seawater, the ice will always melt.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- t_Iharray-like
In-situ temperature of ice (ITS-90), degrees C
- Returns
- melting_ice_SA_CT_ratioarray-like, g kg^-1 K^-1
the ratio of SA to CT changes when ice melts into a large mass of seawater
- gsw.ice.melting_ice_equilibrium_SA_CT_ratio(SA, p)[source]
Calculates the ratio of SA to CT changes when ice melts into seawater with both the seawater and the seaice temperatures being almost equal to the equilibrium freezing temperature. It is assumed that a small mass of ice melts into an infinite mass of seawater. If indeed the temperature of the seawater and the ice were both equal to the freezing temperature, then no melting or freezing would occur; an imbalance between these three temperatures is needed for freezing or melting to occur (the three temperatures being (1) the seawater temperature, (2) the ice temperature, and (3) the freezing temperature.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- melting_ice_equilibrium_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when ice melts into seawater, with the seawater and seaice being close to the freezing temperature.
- gsw.ice.melting_ice_equilibrium_SA_CT_ratio_poly(SA, p)[source]
Calculates the ratio of SA to CT changes when ice melts into seawater with both the seawater and the seaice temperatures being almost equal to the equilibrium freezing temperature. It is assumed that a small mass of ice melts into an infinite mass of seawater. If indeed the temperature of the seawater and the ice were both equal to the freezing temperature, then no melting or freezing would occur; an imbalance between these three temperatures is needed for freezing or melting to occur (the three temperatures being (1) the seawater temperature, (2) the ice temperature, and (3) the freezing temperature.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- melting_ice_equilibrium_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when ice melts into seawater, with the seawater and seaice being close to the freezing temperature.
- gsw.ice.melting_ice_into_seawater(SA, CT, p, w_Ih, t_Ih)[source]
Calculates the final Absolute Salinity, final Conservative Temperature and final ice mass fraction that results when a given mass fraction of ice melts and is mixed into seawater whose properties are (SA,CT,p). This code takes the seawater to contain no dissolved air.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- w_Iharray-like
mass fraction of ice: the mass of ice divided by the sum of the masses of ice and seawater. 0 <= wIh <= 1. unitless.
- t_Iharray-like
In-situ temperature of ice (ITS-90), degrees C
- Returns
- SA_finalarray-like, g/kg
Absolute Salinity of the seawater in the final state, whether or not any ice is present.
- CT_finalarray-like, deg C
Conservative Temperature of the seawater in the final state, whether or not any ice is present.
- w_Ih_finalarray-like, unitless
mass fraction of ice in the final seawater-ice mixture. If this ice mass fraction is positive, the system is at thermodynamic equilibrium. If this ice mass fraction is zero there is no ice in the final state which consists only of seawater which is warmer than the freezing temperature.
- gsw.ice.melting_seaice_SA_CT_ratio(SA, CT, p, SA_seaice, t_seaice)[source]
Calculates the ratio of SA to CT changes when sea ice melts into seawater. It is assumed that a small mass of sea ice melts into an infinite mass of seawater. Because of the infinite mass of seawater, the sea ice will always melt.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- SA_seaicearray-like
Absolute Salinity of sea ice: the mass fraction of salt in sea ice, expressed in g of salt per kg of sea ice.
- t_seaicearray-like
In-situ temperature of the sea ice at pressure p (ITS-90), degrees C
- Returns
- melting_seaice_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when sea ice melts into a large mass of seawater
- gsw.ice.melting_seaice_SA_CT_ratio_poly(SA, CT, p, SA_seaice, t_seaice)[source]
Calculates the ratio of SA to CT changes when sea ice melts into seawater. It is assumed that a small mass of sea ice melts into an infinite mass of seawater. Because of the infinite mass of seawater, the sea ice will always melt.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- SA_seaicearray-like
Absolute Salinity of sea ice: the mass fraction of salt in sea ice, expressed in g of salt per kg of sea ice.
- t_seaicearray-like
In-situ temperature of the sea ice at pressure p (ITS-90), degrees C
- Returns
- melting_seaice_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when sea ice melts into a large mass of seawater
- gsw.ice.melting_seaice_equilibrium_SA_CT_ratio(SA, p)[source]
Calculates the ratio of SA to CT changes when sea ice melts into seawater with both the seawater and the sea ice temperatures being almost equal to the equilibrium freezing temperature. It is assumed that a small mass of seaice melts into an infinite mass of seawater. If indeed the temperature of the seawater and the sea ice were both equal to the freezing temperature, then no melting or freezing would occur; an imbalance between these three temperatures is needed for freezing or melting to occur (the three temperatures being (1) the seawater temperature, (2) the sea ice temperature, and (3) the freezing temperature.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- melting_seaice_equilibrium_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when sea ice melts into seawater, with the seawater and sea ice being close to the freezing temperature.
- gsw.ice.melting_seaice_equilibrium_SA_CT_ratio_poly(SA, p)[source]
Calculates the ratio of SA to CT changes when sea ice melts into seawater with both the seawater and the sea ice temperatures being almost equal to the equilibrium freezing temperature. It is assumed that a small mass of seaice melts into an infinite mass of seawater. If indeed the temperature of the seawater and the sea ice were both equal to the freezing temperature, then no melting or freezing would occur; an imbalance between these three temperatures is needed for freezing or melting to occur (the three temperatures being (1) the seawater temperature, (2) the sea ice temperature, and (3) the freezing temperature.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- melting_seaice_equilibrium_SA_CT_ratioarray-like, g/(kg K)
the ratio dSA/dCT of SA to CT changes when sea ice melts into seawater, with the seawater and sea ice being close to the freezing temperature.
- gsw.ice.melting_seaice_into_seawater(SA, CT, p, w_seaice, SA_seaice, t_seaice)[source]
Calculates the Absolute Salinity and Conservative Temperature that results when a given mass of sea ice (or ice) melts and is mixed into a known mass of seawater (whose properties are (SA,CT,p)).
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- w_seaicearray-like
mass fraction of ice: the mass of sea-ice divided by the sum of the masses of sea-ice and seawater. 0 <= wIh <= 1. unitless.
- SA_seaicearray-like
Absolute Salinity of sea ice: the mass fraction of salt in sea ice, expressed in g of salt per kg of sea ice.
- t_seaicearray-like
In-situ temperature of the sea ice at pressure p (ITS-90), degrees C
- Returns
- SA_finalarray-like, g/kg
Absolute Salinity of the mixture of the melted sea ice (or ice) and the original seawater
- CT_finalarray-like, deg C
Conservative Temperature of the mixture of the melted sea ice (or ice) and the original seawater
- gsw.ice.pot_enthalpy_from_pt_ice(pt0_ice)[source]
Calculates the potential enthalpy of ice from potential temperature of ice (whose reference sea pressure is zero dbar).
- Parameters
- pt0_icearray-like
Potential temperature of ice (ITS-90), degrees C
- Returns
- pot_enthalpy_icearray-like, J/kg
potential enthalpy of ice
- gsw.ice.pot_enthalpy_from_pt_ice_poly(pt0_ice)[source]
Calculates the potential enthalpy of ice from potential temperature of ice (whose reference sea pressure is zero dbar). This is a compuationally efficient polynomial fit to the potential enthalpy of ice.
- Parameters
- pt0_icearray-like
Potential temperature of ice (ITS-90), degrees C
- Returns
- pot_enthalpy_icearray-like, J/kg
potential enthalpy of ice
- gsw.ice.pressure_coefficient_ice(t, p)[source]
Calculates pressure coefficient of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- pressure_coefficient_icearray-like, Pa/K
pressure coefficient of ice
- gsw.ice.pt0_from_t_ice(t, p)[source]
Calculates potential temperature of ice Ih with a reference pressure of 0 dbar, from in-situ temperature, t.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- pt0_icearray-like, deg C
potential temperature of ice Ih with reference pressure of zero dbar (ITS-90)
- gsw.ice.pt_from_pot_enthalpy_ice(pot_enthalpy_ice)[source]
Calculates the potential temperature of ice from the potential enthalpy of ice. The reference sea pressure of both the potential temperature and the potential enthalpy is zero dbar.
- Parameters
- pot_enthalpy_icearray-like
Potential enthalpy of ice, J/kg
- Returns
- pt0_icearray-like, deg C
potential temperature of ice (ITS-90)
- gsw.ice.pt_from_pot_enthalpy_ice_poly(pot_enthalpy_ice)[source]
Calculates the potential temperature of ice (whose reference sea pressure is zero dbar) from the potential enthalpy of ice. This is a compuationally efficient polynomial fit to the potential enthalpy of ice.
- Parameters
- pot_enthalpy_icearray-like
Potential enthalpy of ice, J/kg
- Returns
- pt0_icearray-like, deg C
potential temperature of ice (ITS-90)
- gsw.ice.pt_from_t_ice(t, p, p_ref)[source]
Calculates potential temperature of ice Ih with the general reference pressure, p_ref, from in-situ temperature, t.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- p_refarray-like
Reference pressure, dbar
- Returns
- pt_icearray-like, deg C
potential temperature of ice Ih with reference pressure, p_ref, on the ITS-90 temperature scale
- gsw.ice.rho_ice(t, p)[source]
Calculates in-situ density of ice from in-situ temperature and pressure. Note that the output, rho_ice, is density, not density anomaly; that is, 1000 kg/m^3 is not subtracted from it.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- rho_icearray-like, kg/m^3
in-situ density of ice (not density anomaly)
- gsw.ice.seaice_fraction_to_freeze_seawater(SA, CT, p, SA_seaice, t_seaice)[source]
Calculates the mass fraction of sea ice (mass of sea ice divided by mass of sea ice plus seawater), which, when melted into seawater having the properties (SA,CT,p) causes the final seawater to be at the freezing temperature. The other outputs are the Absolute Salinity and Conservative Temperature of the final seawater.
- Parameters
- SAarray-like
Absolute Salinity, g/kg
- CTarray-like
Conservative Temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- SA_seaicearray-like
Absolute Salinity of sea ice: the mass fraction of salt in sea ice, expressed in g of salt per kg of sea ice.
- t_seaicearray-like
In-situ temperature of the sea ice at pressure p (ITS-90), degrees C
- Returns
- SA_freezearray-like, g/kg
Absolute Salinity of seawater after the mass fraction of sea ice, w_seaice, at temperature t_seaice has melted into the original seawater, and the final mixture is at the freezing temperature of seawater.
- CT_freezearray-like, deg C
Conservative Temperature of seawater after the mass fraction, w_seaice, of sea ice at temperature t_seaice has melted into the original seawater, and the final mixture is at the freezing temperature of seawater.
- w_seaicearray-like, unitless
mass fraction of sea ice, at SA_seaice and t_seaice, which, when melted into seawater at (SA,CT,p) leads to the final mixed seawater being at the freezing temperature. This output is between 0 and 1.
- gsw.ice.sound_speed_ice(t, p)[source]
Calculates the compression speed of sound in ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- sound_speed_icearray-like, m/s
compression speed of sound in ice
- gsw.ice.specvol_ice(t, p)[source]
Calculates the specific volume of ice.
- Parameters
- tarray-like
In-situ temperature (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- specvol_icearray-like, m^3/kg
specific volume
- gsw.ice.t_from_pt0_ice(pt0_ice, p)[source]
Calculates in-situ temperature from the potential temperature of ice Ih with reference pressure, p_ref, of 0 dbar (the surface), and the in-situ pressure.
- Parameters
- pt0_icearray-like
Potential temperature of ice (ITS-90), degrees C
- parray-like
Sea pressure (absolute pressure minus 10.1325 dbar), dbar
- Returns
- tarray-like, deg C
in-situ temperature (ITS-90)